The Crystal and Molecular Structures of Iminodiacetic Acid Hydrochloride, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{\mathbf{4}} . \mathbf{H C l}$, and Iminodiacetic Acid Hydrobromide, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4} . \mathrm{HBr}$

By \AA Å. Oskarsson
Inorganic Chemistry 1, Chemical Centre, University of Lund, P. O. Box 740, S-220 07 Lund 7, Sweden

(Received 19 April 1973; accepted 20 April 1973)

Abstract

The crystal and molecular structures of iminodiacetic acid hydrochloride, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4} . \mathrm{HCl}$, and iminodiacetic acid hydrobromide, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4} . \mathrm{HBr}$, have been determined by a symbolic addition method with three-dimensional single crystal X-ray data obtained on a diffractometer. The compounds are isostructural, crystallizing in the orthorhombic space group Pmmn with $Z=2$. The unit-cell dimensions are $a=12.4101, b=5.7349, c=5.1280 \AA$ and $a=12.8150, b=5.8705, c=5.0870 \AA$ for the chloride and bromide respectively. Positively charged iminodiacetic acid ions are connected by hydrogen bonds via the halide ions and zigzag layers are formed. These layers are stacked in the \mathbf{c} direction and the forces between the layers are of van der Waals type.

Introduction

In a research program at this Institute dealing with rare earth carboxylates the crystal and molecular structures of the neodymium iminodiacetate compounds $\mathrm{Nd}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)_{3} .2 \mathrm{HCl} .7 \mathrm{H}_{2} \mathrm{O}$ (Albertsson \& Oskarsson, 1968) and $\mathrm{Nd}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right) \mathrm{Cl} .3 \mathrm{H}_{2} \mathrm{O}$ (Oskarsson, 1971) have been determined. In order to investigate how the geometry of the organic molecule is affected by different crystallographic surroundings, a systematic study of the compounds $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4} \cdot \mathrm{HX}$, where $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I , has been commenced. A comparison of these structures should also give some information concerning hydrogen bonds with halide ions as acceptors. The infrared spectrum of the chloride has been reported (Novak, Cotrait \& Joussot-Dubien, 1965), but no experimental data have been published for the other compounds.

In this paper the crystal structures of the chloride and bromide are described. They are referred to below as IDAC and IDAB, respectively.

Crystal data

IDAC, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4} . \mathrm{HCl}$, F.W. 169.57. Orthorhombic, Pmmn, $a=12 \cdot 4101$ (22);* $b=5 \cdot 7349$ (16); $c=5 \cdot 1280$ (11) $\AA ; V=365.00(2) \AA^{3} ; \quad Z=2 ; \mu(\mathrm{Cu} K \alpha)=43.2 \mathrm{~cm}^{-1}$; $D_{m}=1.5 ; D_{x}=1.54 \mathrm{~g} \mathrm{~cm}^{-3}$.

IDAB, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4} \mathrm{HBr}$, F.W. 214.04. Orthorhombic, Pmmn, $a=12.8150$ (20); $b=5.8705$ (7); $c=5.0870$ (7) $\AA ; V=382.70(1) \AA^{3} ; Z=2 ; \mu(\mathrm{Cu} K \alpha)=76.7 \mathrm{~cm}^{-1}$; $D_{m}=1.8 ; D_{x}=1.86 \mathrm{~g} \mathrm{~cm}^{-3}$.

Experimental

Crystals of IDAC and IDAB were obtained by evaporation of solutions of iminodiacetic acid in hydro-

[^0]chloric and hydrobromic acid, respectively. IDAB is stable in air at room temperature but IDAC decomposes slowly (approximately within two months). The compositions of the compounds were checked by elemental analysis. The density, D_{m}, was determined by the displacement method with benzene.

Weissenberg photographs showed that IDAC and IDAB are isostructural and crystallize in the orthorhombic system. The only systematically absent reflexions, $h k 0$ with $h+k \neq 2 n$, indicate the space group to be either Pmmn or $\mathrm{Pm2}_{1} n$. The cell dimensions were improved by a least-squares treatment of powder spectra obtained with $\mathrm{Cu} K \alpha_{1}$ radiation $(\lambda=1 \cdot 54051 \AA$) in a Guinier-Hägg focusing camera. Aluminum ($a=$ $4.04962 \AA$) was used as an internal standard.

A single crystal of IDAC with dimensions 0.12×0.13 $\times 0.12 \mathrm{~mm}$ was used for data collection on an automatic single-crystal diffractometer of type CAD-4 (manufactured by Enraf-Nonius, Delft, Holland). Intensities were measured at a take-off angle of 5° with $\mathrm{Cu} \mathrm{K} \alpha$ radiation. A graphite monochromator was used. The $\omega-2 \theta$ scan technique was employed, with a scan inter$\operatorname{val} \Delta \omega=1 \cdot 00+0 \cdot 15 \tan \theta$. The background was measured for $\frac{1}{4}$ of the scan time at each end of the interval. All 404 independent reflexions in the range $5^{\circ}<\theta<70^{\circ}$ were measured with repeated scans. Owing to a failure of the ratemeter, 42 reflexions were excluded in the refinement because they did not obey the condition ($I_{1}-$ $\left.I_{2}\right)^{2} \leq 8\left(I_{1}+I_{2}\right)$ in three attempts, where I_{1} and I_{2} are the intensities in two successive scans of a reffexion. Another 18 reflexions with $I<3 \sigma_{c}(I)$ were judged to be insignificantly different from the background and were excluded. The values of $\sigma_{c}(I)$ are based on counting statistics. The reflexions 311 and 400 were selected as standards, and the intensity of one of them was recorded every hour. The fluctuation in the intensities of the standard reflexions was 6% and could be described as a function of the exposure time by a polynomial of the 4th degree. This polynomial was used for scaling the data set. The values of I and $\sigma_{c}(I)$ were
corrected for Lorentz, polarization and absorption effects. The expression $p=\left(1+\cos ^{2} 2 \theta_{M} \cos ^{2} 2 \theta\right) /(1+$ $\cos ^{2} 2 \theta_{M}$) with $\theta_{M}=13 \cdot 3^{\circ}$ was used in the correction of the polarization effects. The transmission factor, vealuated by numerical integration, varied from 0.607 to $0 \cdot 667$.

A single crystal of IDAB with dimensions $0.10 \times$ $0.10 \times 0.22 \mathrm{~mm}$ was used for the data collection on the diffractometer with the same experimental conditions. Of the 432 independent reflexions, 20 were excluded because they did not obey the condition $\left(I_{1}-I_{2}\right)^{2} \leq 8\left(I_{1}\right.$ $+I_{2}$) in three successive attempts and seven were considered insignificantly different from the background $\left[I<3 \sigma_{\mathrm{c}}(I)\right]$. The fluctuation of the intensities of the standard reflections was less than 2%. The transmission factor varied from 0.374 to 0.578 .

Structure determination and refinement

The structure of IDAC was solved by symbolic addition (Karle \& Karle, 1963; Karle \& Karle, 1966). Since $|E|$ statistics indicate a centre of symmetry the space group Pmmn was chosen.
Full-matrix least-squares refinement minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was performed with weights $w=1 /\left(\sigma_{c}^{2}+\right.$ $\left.a\left|F_{o}\right|^{2}+b\right)$. In the last cycles of refinement $a=0.005$ and $b=2.5$ were used. The convergency was followed by the agreement indices R and R_{w} defined by $R=$ $\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$ and $R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}$. A refinement of the scale factor and the positional parameters for the non-hydrogen atoms with anisotropic thermal parameters converged to $R=0.093$ and $R_{w}=$ $0 \cdot 102$. Two hydrogen atoms were then located in a difference electron density map, which was calculated with data with $\sin \theta / \lambda<0.5$. The third independent hydrogen atom could not be located. The region between the chloride ion and the carboxyl group, the only chemically reasonable one, showed negative electron density.

After a preliminary extinction correction (Zachariasen, 1963) a difference map revealed two peaks in the expected region, $0 \cdot 20$ and $0 \cdot 15 \mathrm{e}^{\AA^{-3}}$, respectively. The remaining hydrogen atom was placed at the position of the strongest peak. However, this hydrogen atom might be disordered as will be discussed later. In the final refinement including an isotropic extinction coefficient (Zachariasen, 1967) the temperature factors of the hydrogen atoms were judged to be too small and were given an arbitrary value of $3 \cdot 0 \AA^{2}$. Refinement converged to $R=0.040$ and $R_{w}=0.048$. The extinction parameter $g=1 \cdot 22(9) \times 10^{4}$ corresponds to a mosaic spread of $4.75^{\prime \prime}$ or a domain size of $1.89 \times 10^{-4} \mathrm{~cm}$. In the last cycle of refinement the shifts in the parameters were less than 1% of the estimated standard deviations and the refinement was considered complete. The average values of $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ were nearly constant in different $\left|F_{0}\right|$ intervals. The value of S, defined by $S=$ $\left[\Sigma w\left(\left|F_{o}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /(m-n)\right]^{1 / 2}$, where m is the number of observations and n the number of parameters varied,
was $1 \cdot 04$. Thus the errors appear to be correctly estimated.

The positional and thermal parameters for IDAC, except those for $\mathrm{H}(3)$, were used as preliminary parameters for IDAB. A difference map, obtained from data with $\sin \theta / \lambda<0 \cdot 45$, had the same features as IDAC, and $\mathrm{H}(3)$ was placed at the position of the strongest peak. In the last cycle of refinement the shifts in the parameters were less than 1% of the standard deviations. The extinction parameter $g=0.48(3) \times 10^{4}$ corresponds to a mosaic spread of $12 \cdot 1^{\prime \prime}$ or a domain size of $0.74 \times 10^{-4} \mathrm{~cm}$. Weights used in the last cycles of refinement were $w=1 /\left(\sigma_{c}^{2}+0 \cdot 00025\left|F_{o}\right|^{2}+4 \cdot 0\right)$. This gave $R=0.029, R_{w}=0.035, S=1.06$ and a smooth weigthing scheme.
The final difference syntheses were featureless for both structures. The resulting positional and thermal parameters are given in Tables 1 and 2, with the lengths of the principal axes of the thermal motion ellipsoids. Observed and calculated structure factors are compared in Table 3. The atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). Selected interatomic distances and angles are given in Table 4.

Table 1. Positional parameters with estimated standard deviations

IDAC			
	x	y	z
Cl	$\frac{1}{4}$	$\frac{3}{4}$	0.52896 (28)
N	$\frac{1}{4}$	$\frac{1}{4}$	0.27521 (72)
$\mathrm{O}(1)$	0.43617 (21)	$\frac{4}{4}$	0.53231 (44)
$\mathrm{O}(2)$	0.53711 (20)	$\frac{1}{4}$	$0 \cdot 17030$ (50)
$\mathrm{C}(1)$	$0 \cdot 44513$ (26)	$\frac{1}{4}$	$0 \cdot 30088$ (65)
$\mathrm{C}(2)$	$0 \cdot 35043$ (26)	$\frac{1}{4}$	$0 \cdot 11770$ (67)
$\mathrm{H}(1)$	- ${ }^{\frac{1}{4}}$	$0 \cdot 1118$ (77)	$0 \cdot 3880$ (79)
H(2)	0.3526 (23)	$0 \cdot 1072$ (64)	0.0033 (56)
H(3)	$0 \cdot 5922$ (37)	1	0.2752 (93)
IDAB			
	x	y	z
Br	$\frac{1}{4}$	$\frac{3}{4}$	$0 \cdot 55169$ (14)
N	$\frac{1}{4}$	$\frac{1}{4}$	$0 \cdot 26010$ (92)
$\mathrm{O}(1)$	$0 \cdot 43068$ (27)	4	$0 \cdot 51992$ (56)
$\mathrm{O}(2)$	$0 \cdot 52796$ (26)	$\frac{1}{4}$	0.15383 (66)
$\mathrm{C}(1)$	$0 \cdot 43918$ (31)	$\frac{1}{4}$	0.28547 (77)
C(2)	$0 \cdot 34698$ (33)	$\frac{1}{4}$	$0 \cdot 10217$ (76)
$\mathrm{H}(1)$	1	$0 \cdot 1190$ (101)	0.3781 (109)
$\mathrm{H}(2)$	0.3540 (35)	$0 \cdot 1134$ (82)	0.0078 (74)
H(3)	0.5761 (50)	$\frac{1}{4}$	$0 \cdot 2318$ (131)

Five cycles of refinement in the non-centrosymmetric space group $P m 2_{1} n$ (a different setting of $P m n 2_{1}$), with the y parameters of the heavy atoms (except X^{-}) shifted slightly (and randomly) from 0.25 and 0.75 , resulted in an increase in R, R_{w} and the standard deviations. As the heavy atoms of the organic molecule were found to be situated within 3σ from the planes $y=\frac{1}{4}$ and $y=\frac{3}{4}$ in the non-centrosymmetric structure, it was concluded that a centrosymmetric model well describes the structures of IDAC and IDAB.

All computations were made on the UNIVAC1 108 computer in Lund, Sweden, and programs used are listed in Table 5.

Description of the structure

The structure is built up of halide ions and positively charged iminodiacetic acid ions, $\left[\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}_{4}\right]^{+}$, with the symmetry mm . The atoms of this ion are designated in

Fig. 1. The superscripts (i) to (vi) are used to indicate the following equivalent sites in the structure:
(i) $x, y, 1+z$
(ii) $1-x, 1-y, 1-z$
(iii) $\frac{1}{2}-x, y, \quad z$
(iv) $x, \frac{1}{2}-y, \quad z$
(v) $x, 1+y, \quad z$
(vi) $x-\frac{1}{2}, 1-y, 1-z$

Table 2. Thermal parameters $\beta_{i j} \times 10^{5}$ with estimated standard deviations, and root-mean-square components R_{i} along the principal axes of the ellipsoids of thermal vibration

The expression used is $\exp \left[-\left(\beta_{11} h^{2}+\ldots+2 \beta_{12} h k+\ldots\right)\right]$.

IDAC									
	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	R_{1}	R_{2}	R_{3}
Cl	385 (8)	2309 (45)	5384 (77)	0	0	0	$0 \cdot 1734$ (19)	$0 \cdot 1962$ (19)	$0 \cdot 2678$ (19)
N	446 (24)	2631 (137)	2241 (144)	0	0	0	$0 \cdot 1728$ (56)	$0 \cdot 1865$ (51)	0.2094 (54)
$\mathrm{O}(1)$	563 (16)	3968 (108)	2657 (102)	0	19 (32)	0	$0 \cdot 1880$ (36)	$0 \cdot 2096$ (30)	$0 \cdot 2571$ (35)
$\mathrm{O}(2)$	431 (15)	3922 (107)	3477 (107)	0	176 (33)	0	0.1774 (34)	$0 \cdot 2202$ (35)	$0 \cdot 2556$ (35)
C(1)	512 (22)	2199 (109)	3105 (133)	0	155 (42)	0	0.1887 (44)	$0 \cdot 1914$ (47)	$0 \cdot 2138$ (43)
C(2)	481 (24)	3865 (146)	2890 (136)	0	213 (43)	0	0.1764 (48)	$0 \cdot 2119$ (46)	$0 \cdot 2538$ (48)
IDAB									
Br	391 (5)	1986 (24)	4982 (43)	0	0	0	$0 \cdot 1790$ (12)	$0 \cdot 1848$ (11)	$0 \cdot 2538$ (11)
N	354 (27)	2033 (132)	2225 (163)	0	0	0	$0 \cdot 1687$ (62)	$0 \cdot 1707$ (57)	$0 \cdot 1859$ (58)
O(1)	484 (20)	4348 (141)	2367 (117)	0	-34 (39)	0	$0 \cdot 1752$ (40)	$0 \cdot 2000$ (41)	0.2739 (45)
$\mathrm{O}(2)$	351 (18)	4005 (125)	3284 (130)	0	91 (39)	0	$0 \cdot 1670$ (42)	$0 \cdot 2087$ (39)	0.2625 (39)
C(1)	416 (24)	2038 (107)	2677 (154)	0	77 (49)	0	$0 \cdot 1748$ (52)	$0 \cdot 1872$ (46)	$0 \cdot 1915$ (50)
C(2)	427 (27)	3236 (153)	1990 (133)	0	149 (48)	0	$0 \cdot 1523$ (52)	$0 \cdot 1937$ (56)	$0 \cdot 2335$ (54)

Table 3. Observed and calculated structure factors
The columns are $h, 10 \times\left|F_{o}\right|$ and $10 \times\left|F_{c}\right|$.

Table 4. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in IDAC and IDAB
(a) Interlayer distances

	IDAC	IDAB
$\mathrm{H}\left(2^{\mathrm{i}}\right) \cdots \mathrm{O}\left(2^{\mathrm{it}}\right)$	$2 \cdot 620(37)$	$2.741(51)$
$\mathrm{H}\left(2^{\mathrm{i}}\right) \cdots \mathrm{O}(1)$	$2 \cdot 753(29)$	$2.787(39)$
$\mathrm{O}(1) \cdots \mathrm{O}\left(2^{\mathrm{i}}\right)$	$3 \cdot 5032(36)$	$3.4573(47)$
(b) The iminodiacetic acid ion		
Dis,tance	IDAC	IDAB
$\mathrm{N}-\mathrm{C}(2)$	$1.4852(36)$	$1.4798(46)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.5045(47)$	$1.5051(57)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.1920(39)$	$1.1976(49)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.3234(38)$	$1.3202(50)$
$\mathrm{N}-\mathrm{H}(1)$	$0.981(43)$	$0.976(58)$
$\mathrm{C}(2)-\mathrm{H}(2)$	$1.008(34)$	$0.939(46)$
$\mathrm{O}(2)-\mathrm{H}(3)$	$0.870(49)$	$0.734(64)$

Table 4 (cont.)
(c) The hydrogen bonds

	IDAC	DAB
N $\cdots \cdots \cdot$ X	$3 \cdot 1489$ (18)	$3 \cdot 2888$ (22)
$\mathrm{N} \cdot \cdots \cdot \mathrm{H}\left(1^{\text {iv }}\right.$)	$0 \cdot 981$ (43)	$0 \cdot 976$ (58)
X $\cdots \cdots \cdot \mathrm{H}\left(1^{\text {iv }}\right)$	2-197 (44)	$2 \cdot 339$ (59)
$\angle \mathrm{N}-\mathrm{H}\left(1^{\text {iv }}\right.$) $\cdots \mathrm{X}$	163 (3)	164 (5)
$\mathrm{O}\left(2^{\text {ii }}\right) \cdots \mathrm{X}$	3.0591 (28)	$3 \cdot 2157$ (34)
$\mathrm{O}\left(2^{\text {ii }}\right)-\mathrm{H}\left(3^{\text {ii }}\right)$	$0 \cdot 870$ (49)	0.734 (64)
$\mathrm{X} \cdots \cdots \cdots \mathrm{H}\left(3^{\text {ii }}\right)$	$2 \cdot 201$ (49)	$2 \cdot 486$ (65)
$\angle \mathrm{O}\left(2^{\text {i }}\right.$) $-\mathrm{H}\left(3^{\text {i }}\right.$) $\cdots \mathrm{X}$	169 (4)	174 (7)
$\angle \mathrm{H}\left(1^{\text {iv }}\right) \cdots \mathrm{C} \cdot \cdots \cdots \cdot \mathrm{H}\left(1^{v}\right)$	142 (2)	136 (3)
$\angle \mathrm{H}\left(3^{i i}\right) \cdots \mathrm{X} \cdots \cdots \cdots \mathrm{H}\left(3^{\text {vi }}\right)$	126 (2)	127 (3)
$\angle \mathrm{H}\left(1^{\text {iv }}\right) \cdots \mathrm{C} \cdot \cdots \cdots \cdot \mathrm{H}\left(3^{\text {if }}\right.$)	99 (1)	100 (1)

where x, y, z are the atomic coordinates given in Table 1. The content of one unit cell is shown in Fig. 2. The non-hydrogen atoms of the two iminodiacetic acid ions in the unit cell are located in the mirror planes at $y=\frac{1}{4}$ and $y=\frac{3}{4}$. These ions are connected by hydrogen bonds via the halide ions and zigzag shaped infinite layers perpendicular to \mathbf{c} are formed. All hydrogen atoms capable of hydrogen bonding are thereby used, and the interaction between the layers must be predominantly of van der Waals type.

The lattice parameter c is 0.041 (1) \AA smaller in IDAB than in IDAC. This is the result of a more efficient packing of the layers in IDAB. The shortest interlayer contact in IDAC, $2 \cdot 62(4) \AA$, is between $H\left(2^{i}\right)$ and $\mathrm{O}\left(2^{i i}\right)$, and it indicates van der Waals contact between these atoms. This contact prevents the non-hydrogen atoms in different organic ions from getting closer than $3.503(4) \AA\left[\mathrm{O}(1)-\mathrm{O}\left(2^{\mathrm{i}}\right)\right]$. In IDAB the distance $\mathrm{H}\left(2^{\mathrm{i}}\right)-$ $\mathrm{O}\left(2^{\text {ii }}\right)$ has increased to 2.74 (5) \AA and it is possible for $O(1)$ and $O\left(2^{i}\right)$ to get as close as $3 \cdot 475$ (5) \AA.
The interatomic distances and angles within the organic ion are not significantly different in IDAC and IDAB (Table 5), and the dimensions agree well with those found in similar compounds (Bauer, 1938; Albertsson, 1972). The angle $\mathrm{C}-\mathrm{N}-\mathrm{C}\left(114 \cdot 2^{\circ}\right)$ is significantly different from the 'expected' tetrahedral value

Angle	IDAC	IDAB
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}\left(2^{\mathrm{iii}}\right)$	$114 \cdot 1(4)$	$114 \cdot 2(4)$
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(1)$	$108 \cdot 4(3)$	$108 \cdot 8(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$	$111 \cdot 0(3)$	$111 \cdot 2(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$123 \cdot 3(3)$	$123 \cdot 1(4)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$125 \cdot 7(3)$	$125 \cdot 7(4)$
$\mathrm{C}(2)-\mathrm{N}--\mathrm{H}(1)$	$109(1)$	$110(2)$
$\mathrm{H}(1)-\mathrm{N}-\mathrm{H}\left(1^{\mathrm{iv}}\right)$	$108(5)$	$104(7)$
$\mathrm{N}--\mathrm{C}(2)-\mathrm{H}(2)$	$110(2)$	$111(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	$110(2)$	$104(3)$
$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{H}\left(2^{\mathrm{iv}}\right)$	$98(2)$	$104(3)$
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{H}(3)$	$111(3)$	$118(5)$

and the same situation is found in dimethylammonium chloride (Lindgren \& Olovsson, 1968). The dimensions of the carboxyl group indicate one double bond, $\mathrm{C}(1)-$ $\mathrm{O}(1)$, and one single bond, $\mathrm{C}(1)-\mathrm{O}(2)$. The location of the hydrogen atom $\mathrm{H}(3)$ close to $\mathrm{O}(2)$ thus seems to be reasonable. The deviations from 120° of the angles around $C(1)$ supports this view. A discussion of the conformation of the iminodiacetic acid molecule in different crystallographic surroundings will be postponed to a later publication.

Fig. 1. Designation of the atoms in the positively charged iminodiacetic acid ion. Figs. 1, and 2 were drawn by the program $O R T E P$.

Fig. 2. A stereoscopic pair of drawings showing the content of one unit cell.

Table 5. Computer programs

Program	Subject
CELSIUS	Refinement of unit-cell dimensions.
DATAPC	Corrections for Lorentz, polarization and absorption effects and calculations of extinction components.
GAASA	Symbolic addition.
DRF	Fourier calculations.
LINUS	Full-matrix least-squares refinement with option for
	refinement of the extinction parameters.
WAL	Weighting-scheme analysis.
ORFFE	A crystallographic function and error program.
ORTEP	A thermal-ellipsoid plot program.
LALS	Full-matrix least-squares refinement.
DATAP2	Absorption correction.
EXTDATA	Extinction correction.
SACTA	Printing of structure factor tables.

Authors
J. Tegenfeldt.
P.-G. Jönsson and R. Liminga. It is a modified version of DATAPH, written by P. Coppens, L. Leiserowitz \& D. Rabinovich.
O. Lindgren, O. Lindqvist \& J. Nyborg.
A. Zalkin, modified by R. Liminga \& J. O. Lundgren.
W. R. Busing, K. O. Martin \& H. A. Levy. Extended by P. Coppens \& W. Hamilton.
P.-G. Jönsson.
W. R. Busing, K. O. Martin \& H. A. Levy.
C. K. Johnson.
P. Gantzel, R. Sparks \& K. Trueblood. Modified by A. Zalkin and by R. Liminga, J. O. Lundgren \&
C. I. Brändén.
P. Coppens, L. Leiserowitz \& D. Rabinovich. Revised by O. Olofsson \& M. Elfström.
B. G. Brandt.
J. Albertsson.

From a geometrical point of view, a hydrogen bond is said to exist if a hydrogen atom-heavy atom distance is $0.2 \AA$ or more shorter than the sum of the van der Waals radii (Hamilton \& Ibers, 1968). According to this criterion the halide ion is hydrogen bonded to two nitrogen atoms and two oxygen atoms in an approximately tetrahedral arrangement. The deviation from linearity of the hydrogen bonds is in the range $6-17^{\circ}$.

The difficulties in determining the position of $\mathbf{H}(3)$ might be due to a disordered arrangement of this atom. The difference map revealed another possible position $\left(0.55, \frac{1}{4}, 0 \cdot 83\right)$ with a distance of $1.7 \AA$ to $\mathrm{O}\left(2^{\mathrm{ii}}\right)$ and $2 \cdot 1$ \AA to $\mathrm{O}(1)$. An attempt to refine half a hydrogen in each of the two positions gave in IDAC the result that the half hydrogen atom at ($0 \cdot 55, \frac{1}{4}, 0 \cdot 83$) was moved to $\left(0 \cdot 54, \frac{1}{4}, 0 \cdot 99\right)$, where the distance to $\mathrm{O}\left(2^{11}\right)$ and $\mathrm{O}(1)$ are 0.9 and $2.7 \AA$, respectively. The difference electron density map might indicate a weak interaction between the layers, but the refined position contradicts such a conclusion.

Due to the size of the halide ions one would expect stronger hydrogen bonds in IDAC compared with IDAB. The differences $d_{\mathrm{N}-\mathrm{Br}}-d_{\mathrm{N}-\mathrm{Cl}}$ and $d_{\mathrm{O}-\mathrm{Br}}-d_{\mathrm{O}-\mathrm{Cl}}$ are 0.140 (3) and 0.157 (4) \AA, respectively, which might indicate that the hydrogen bond $\mathrm{O}-\mathrm{H} . . \mathrm{X}$ is more affected by the size of the halide ion than the $\mathrm{N}-\mathrm{H}^{+} \ldots \mathrm{X}$ bond. The average difference 0.149 (4) \AA, is the same as the difference in the ionic radii of Cl^{-} and $\mathrm{Br}^{-}, 0.15 \AA$ (Shannon \& Prewitt, 1969). Similar behaviour is found in L-cystine hydrochloride (Steinrauf, Peterson \& Jensen, 1958) and L-cystine hydrobromide (Peterson, Steinrauf \& Jensen, 1960).

I am indebted to Drs Jörgen Albertsson and Ingmar Grenthe for useful discussions and many valuable suggestions. I also wish to thank Professor Sture Fronaeus for his kind interest and for the facilities he has put at my disposal. This work is part of a research project supported by the Swedish Natural Science Research Council.

References

Albertsson, J. (1972). Thesis, Univ. of Lund, Sweden, p. 40. Albertsson, J. \& Oskarsson, Å. (1968). Acta Chem. Scand. 22, 1700-1702.
Bauer, S. H. (1938). J. Amer. Chem. Soc. 60, 524-530.
Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bond in Solids: Methods of Molecular Structure Determination. Amsterdam: Benjamin.
International Tables for X-ray Crystallography (1962). Vol. III. pp. 202-206. Birmingham: Kynoch Press.

Karle, J. \& Karle, I. L. (1963). Acta Cryst. 16, 969-975.
Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859.
Lindgren, J. \& Olovsson, I. (1968). Acta Cryst. B24, 549-553.
Novak, A., Cotrait, M. \& Joussot-Dubien, J. (1965). Bull. Soc. Chim. Fr. pp. 1808-1812.
Oskarsson, \AA. (1971). Acta Chem. Scand. 25, 1206-1216.
Peterson, J., Steinrauf, L. K. \& Jensen, L. H. (1960). Acta Cryst. 13, 104-109.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Steinrauf, L. K., Peterson, J. \& Jensen, L. H. (1958). J. Amer. Chem. Soc. 80, 3835-3838.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

[^0]: * Numbers in parentheses represent estimated standard deviations in the last significant digits.

